Partial quenching and chiral symmetry breaking

Michael Creutz

Pseudoscalar spectrum versus m_u at fixed $m_d \neq 0$

Partial quenching

• generate dynamical lattices with fixed "sea" quark masses

• study quark propagators with different "valence" quark masses.

• from these form "valence" bound states

Michael Creutz

Usual assumption

- as valence masses go to zero
 - a valence condensate $\langle \overline{\psi}_{val} \psi_{val} \rangle \neq 0$ forms
 - valence pion masses go to zero

In some cases this assumption can fail

Consider two non-degenerate flavors "u" and "d"

- chiral symmetry for the dynamical pions
 - $M_{\pi} \sim \frac{m_u + m_d}{2} + O(m_q^2)$

Fix $m_d \neq 0$ but take $m_u = 0$

- $M_{\pi} \sim m_d/2 \neq 0$
- no singularity for m_u in the vicinity of zero
 - "Dashen phase" at $m_u = -m_d + O(m_d^2)$

Banks and Casher

- small imaginary eigenvalues of the Dirac operator $\rho(0)$
- generate a jump in the condensate $\langle \overline{\psi}\psi \rangle$ as m_q passes through zero

No jump in sea $\langle \overline{u}u \rangle$ at $m_u = 0$ when m_d remains finite

At vanishing m_u the up quark propagator has $\rho_u(0) = 0$

Michael Creutz

Bring in the valence quarks and take m_{val} to zero

• the valence propagator and the up quark propagator become the same

•
$$D_{val} \rightarrow D_u$$
 as $m_{val} \rightarrow 0$

$$\bullet \quad \rho_{val}(0) \to \rho_u(0) = 0$$

Valence quarks do not condense

- no valence chiral symmetry breaking
- no expectation for massless valence pions

Conclusion

• partially quenched perturbation theory can fail if $\langle m_{val} \rangle < \langle m_s \rangle$

• independent of lattice fermion formulation

• a consequence of the anomaly